Subsets of the zinc finger motifs in dsRBP-ZFa can bind double-stranded RNA.
نویسندگان
چکیده
dsRBP-ZFa is a Xenopus zinc finger protein that binds dsRNA and RNA-DNA hybrids with high affinity and in a sequence-independent manner. The protein consists of a basic N-terminal region with seven C2H2 zinc finger motifs and an acidic C-terminal region that is not required for binding. The last four zinc finger motifs, and the linkers that join them, are nearly identical repeats, while the first three motifs and their linkers are each unique. To identify which regions of the protein are involved in nucleic acid binding, we examined the ability of five protein fragments to bind dsRNA and RNA-DNA hybrids. Our studies reveal that a fragment encompassing the three N-terminal, unique zinc finger motifs and another encompassing the last three of the nearly identical motifs have binding properties similar to the full-length protein. Since these two fragments do not share zinc finger motifs of the same sequence, dsRBP-ZFa must contain more than one type of zinc finger motif capable of binding dsRNA. As with the full-length protein, ssRNA and DNA do not significantly compete for dsRNA binding by the fragments.
منابع مشابه
A Xenopus zinc finger protein that specifically binds dsRNA and RNA-DNA hybrids.
Proteins containing C2H2 type zinc finger motifs represent one of the largest classes of nucleic acid-binding proteins found in nature. We describe a novel zinc finger protein, dsRBP-ZFa, isolated by screening an expression library with dsRNA. The dsRBP-ZFa cDNA encodes a protein containing seven zinc finger motifs and an acidic C-terminal domain. Mobility shift experiments demonstrate that dsR...
متن کاملSolution structure of the N-terminal zinc fingers of the Xenopus laevis double-stranded RNA-binding protein ZFa.
Several zinc finger proteins have been discovered recently that bind specifically to double-stranded RNA. These include the mammalian JAZ and wig proteins, and the seven-zinc finger protein ZFa from Xenopus laevis. We have determined the solution structure of a 127 residue fragment of ZFa, which consists of two zinc finger domains connected by a linker that remains unstructured in the free prot...
متن کاملZinc finger proteins: getting a grip on RNA.
C2H2 (Cys-Cys-His-His motif) zinc finger proteins are members of a large superfamily of nucleic-acid-binding proteins in eukaryotes. On the basis of NMR and X-ray structures, we know that DNA sequence recognition involves a short alpha helix bound to the major groove. Exactly how some zinc finger proteins bind to double-stranded RNA has been a complete mystery for over two decades. This has bee...
متن کاملNucleic-acid-binding properties of the C2-L1Tc nucleic acid chaperone encoded by L1Tc retrotransposon
It has been reported previously that the C2-L1Tc protein located in the Trypanosoma cruzi LINE (long interspersed nuclear element) L1Tc 3' terminal end has NAC (nucleic acid chaperone) activity, an essential activity for retrotransposition of LINE-1. The C2-L1Tc protein contains two cysteine motifs of a C2H2 type, similar to those present in TFIIIA (transcription factor IIIA). The cysteine moti...
متن کاملBiochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect.
APOBEC3G (APO3G), a cytidine deaminase with two zinc finger domains, inhibits human immunodeficiency virus type 1 replication in the absence of Vif. Here, we provide a comprehensive molecular analysis of the deaminase and nucleic acid binding activities of human APO3G using a pure system containing only one protein component, i.e., highly purified, catalytically active enzyme expressed in a bac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 38 13 شماره
صفحات -
تاریخ انتشار 1999